Essential for understanding this presentation:

- 1) Anatomy: The Thyroid Gland and it's surroundings
- 2) **Biochemistry:** Hormones produced by the Thyroid Gland
- 3) **Physiology:** Function of the hormones produced by the Thyroid Gland

First then can one start on a journey to investigate abnormal functions of the Thyroid gland

The Investigations of the Thyroid Gland *Objectives:*

- Describe the mechanisms of endocrine hypofunction and hyperfunction.
- 2) Differentiate among **primary**, **secondary** and **tertiary** endocrine disorders.

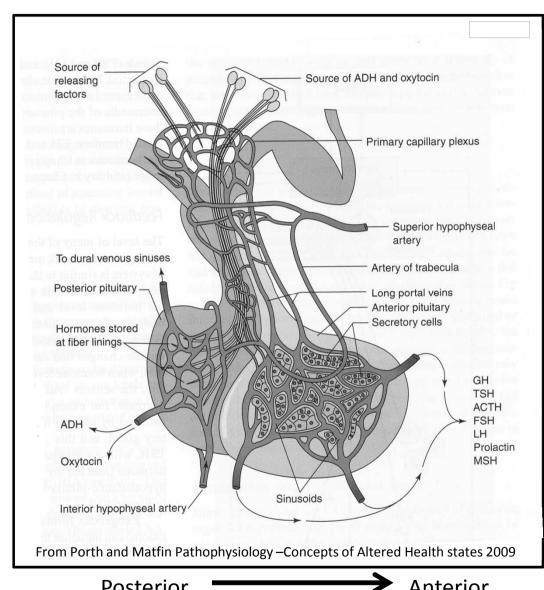
Discuss - based on the normal physiology - the **rationale** behind

3) Symptoms of a dysfunctional Thyroid Gland.

4) The investigations the Thyroid Gland.

Essential for understanding the investigations

1) Anatomy:


2) **Biochemistry:**

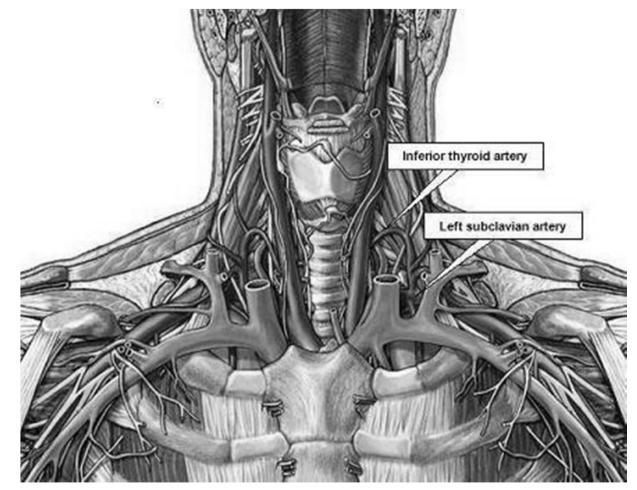
3) **Physiology:**

4) Diseases

Connections to/from hypothalamus (nerve and vessels) to the Thyroid gland

The hypophyseal portal system

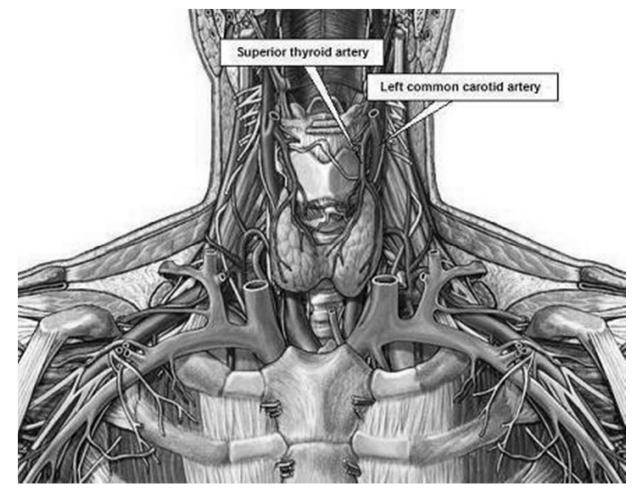
Posterior Anterior


Thyroid Gland 5 2011-10-05 ©lassen-nielsen.com

Relations

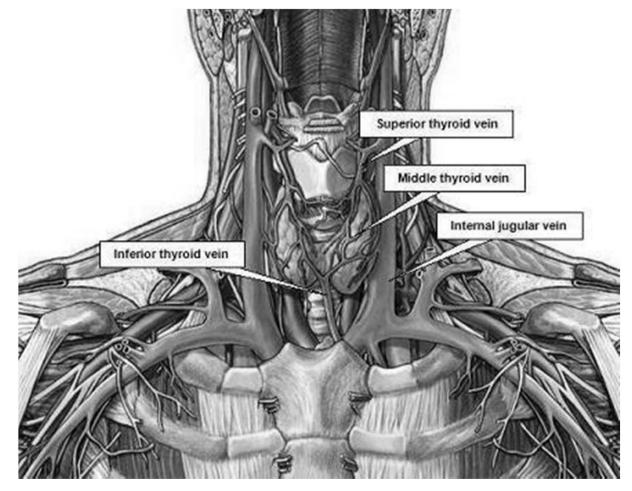
Trachea

Muscles


Main Arteries

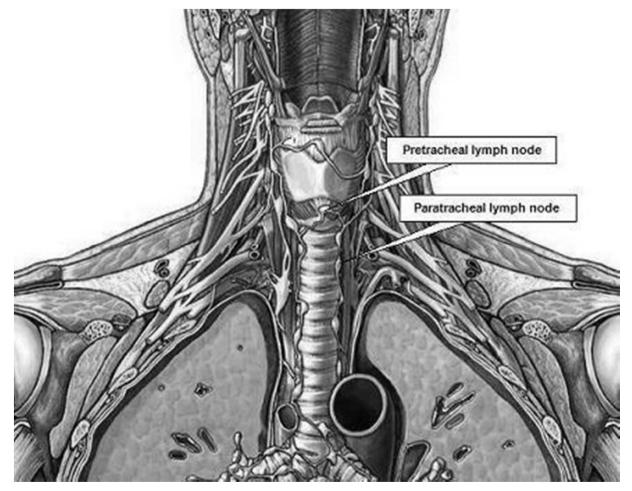
http://fitsweb.uchc.edu/student/selectives/Luzietti/Thyroid_anatomy.htm
Anterior

Relations


Main Arteries

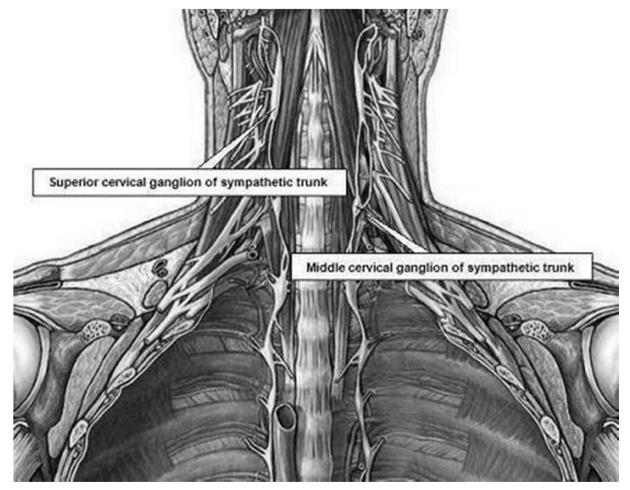
http://fitsweb.uchc.edu/student/selectives/Luzietti/Thyroid_anatomy.htm
Anterior

Relations


Main veins

http://fitsweb.uchc.edu/student/selectives/Luzietti/Thyroid_anatomy.htm
Anterior

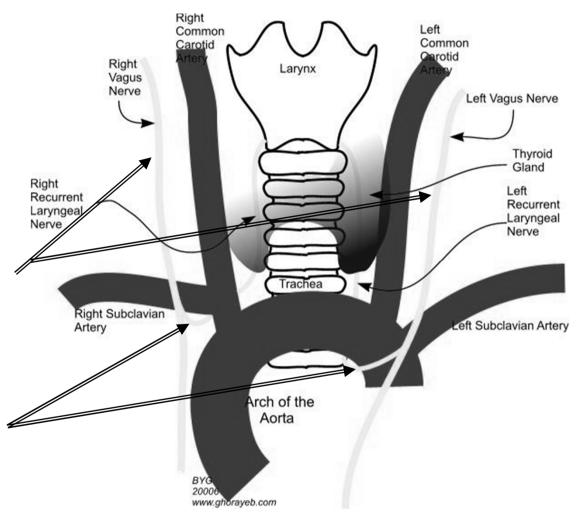
Relations


Lymph drainage

http://fitsweb.uchc.edu/student/selectives/Luzietti/Thyroid_anatomy.htm
Anterior

Relations

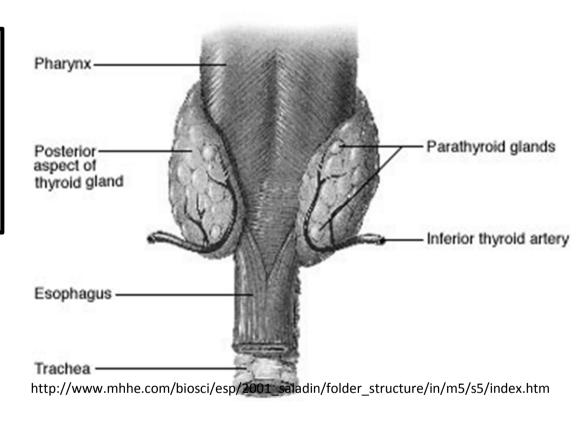
Nerves



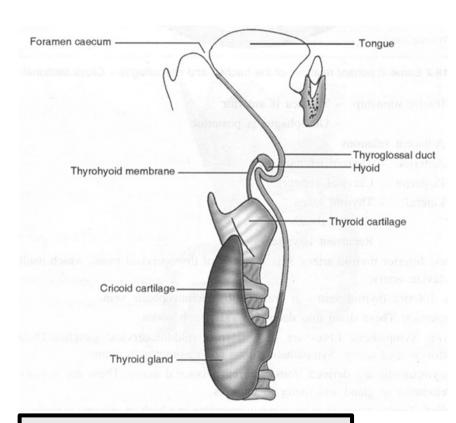
http://fitsweb.uchc.edu/student/selectives/Luzietti/Thyroid_anatomy.htm
Anterior

Which nerves are missing?

Vagus Nerves


Recurent Laryngeal Nerves

Always double check that you have it all


Any other glands close by?

Parathyroid gland

Posterior view

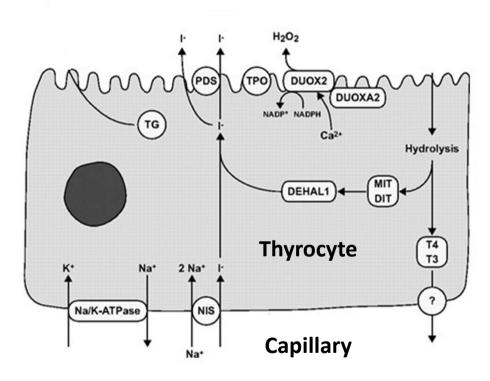
Essential anatomy - Development

Why is it important?

Aberrant tissue

The thyroid gland begins to develop as a median thickening of endoderm on the floor of the pharynx between the first and second pharyngeal pouches. This area later invaginates to form the median diverticulum, which appears in the later half of the fourth week. This thyroid diverticulum grows further, becoming a solid cellular cord called the thyroglossal duct. The duct grows caudally and bifurcates to give rise to the thyroid lobes and the isthmus.

Essential for understanding the investigations


1) Anatomy:

2) **Biochemistry:**

3) **Physiology:**

4) Diseases

Follicle lumen

Orientation

Bizhanova A, Kopp P Endocrinology 2009;150:1084-1090

PDS TPO DUOX2
NADP' NADPH
Ca2+
HYdrolysis

Na*

Na/K-ATPase
NIS

NIS

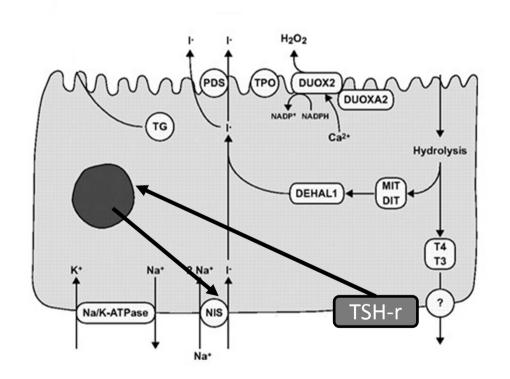
TSH-r

7

Bizhanova A, Kopp P Endocrinology 2009;150:1084-1090

TSH signaling via the TSH receptor controls thyroid hormone synthesis,
Uptake of iodide into the

thyrocytes is mediated by an intrinsic membrane glycoprotein, the **sodium-iodide symporter** (NIS), which actively cotransports two Na⁺ per each iodide anion.


NIS is dependent on the Na gradient created by the Na/K-ATPase

TSH can increase expression of NIS in the basolateral membrane of thyrocytes.

Transcription

m-RNA

Protein synthesis

Bizhanova A, Kopp P Endocrinology 2009;150:1084-1090

PDS TPO DUOX2
NADP' NADPH
Ca²⁺
Hydronsis

Na' 2 Na' 1

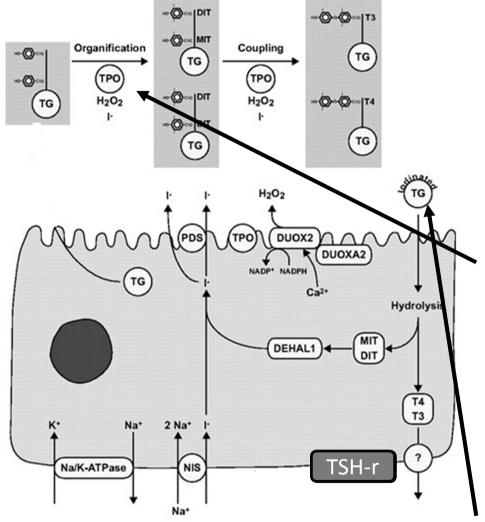
Na' 4 T3

TSH-r

Bizhanova A, Kopp P Endocrinology 2009;150:1084-1090

H₂O₂ is produced by the calcium- and reduced nicotinamide adenine dinucleotide phosphatedependent (NADPH) enzyme DUOX2.

DUOX2 requires a specific maturation factor, DUOXA2

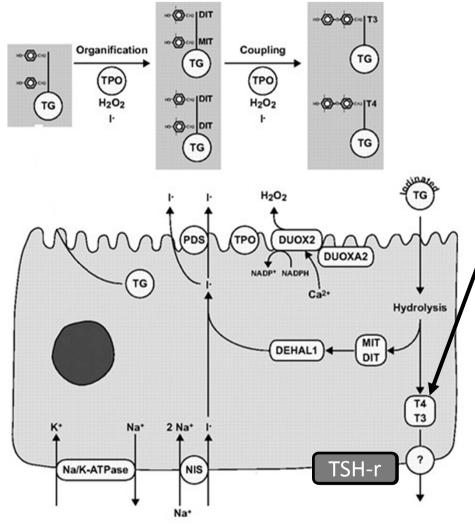

At the apical membrane, iodide efflux is, in part, mediated by **pendrin** (PDS/SLC26A4)

Hydrolysis Na/K-ATPase

Bizhanova A, Kopp P Endocrinology 2009;150:1084-1090

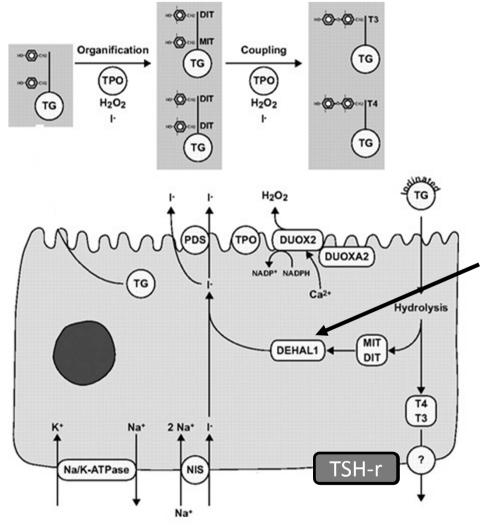
 H_2O_2 At the cell-colloid interface, iodide is oxidized by **TPO** (thyroid **p**er**o**xidase or thyroperoxidase) in the presence of H_2O_2

Thyroglobulin (TG), which is secreted into the follicular lumen, serves as matrix for synthesis of T4 and T3.


Bizhanova A, Kopp P Endocrinology 2009;150:1084-1090

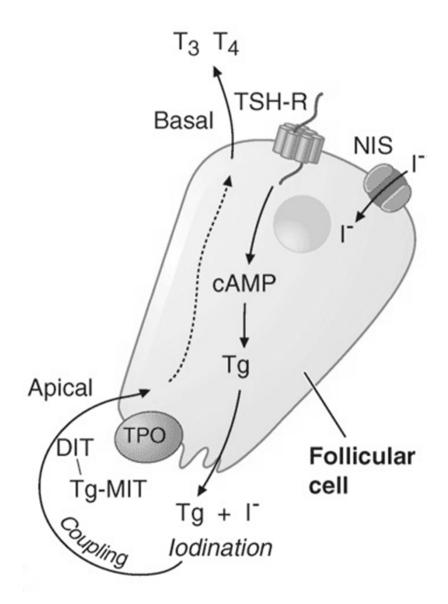
TG secreted into the follicular lumen, serves as matrix for synthesis of T4 and T3.

TPO catalyzes iodination of selected tyrosyl residues (organification), which results in the formation of MIT and DIT.


Two iodotyrosines are coupled to form either T4 or T3 (catalyzed by TPO). **Iodinated thyroglobulin** is stored as colloid in the follicular lumen.

2011-10-05 ©lassen-nielsen.com IOIIICUIdI IUIIIEII. Thyroid Gland 20

Bizhanova A, Kopp P Endocrinology 2009;150:1084-1090


Iodinated thyroglobulin is stored as colloid in the follicular lumen. Upon a demand for thyroid hormone secretion, thyroglobulin is internalized into the follicular cell by pinocytosis and digested in lysosomes, which generates T4 and T3 that are released into the bloodstream through unknown mechanisms.

Bizhanova A, Kopp P Endocrinology 2009;150:1084-1090

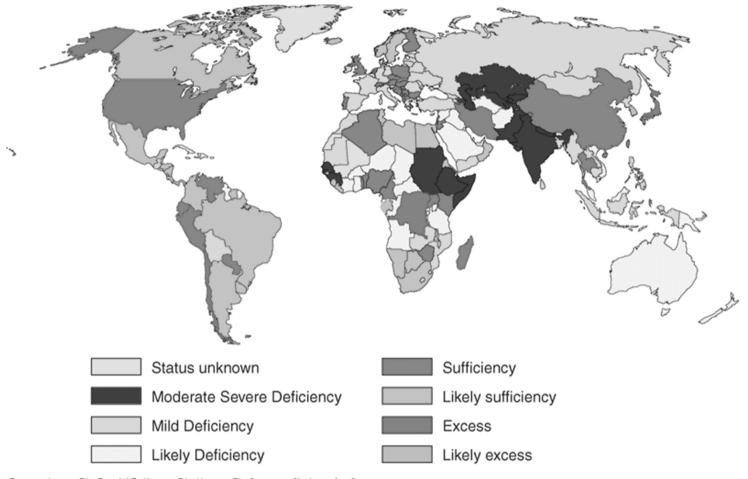
The unused MIT and DIT are retained in the cell and deiodinated by the iodotyrosine dehalogenase 1 (DEHAL1).

The released iodide is recycled for thyroid hormone synthesis.

What does this figure show?

Basically the same as the previous 8 slides

Other growth factors simulates TSH:


- 1 Insulin-like growth factor I (IGF-1)
- 2 Epidermal growth factor
- 3 Transforming growth factor ß
- 4 Endothelins

T₃ converted to T₄

Source: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 18th Edition: www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

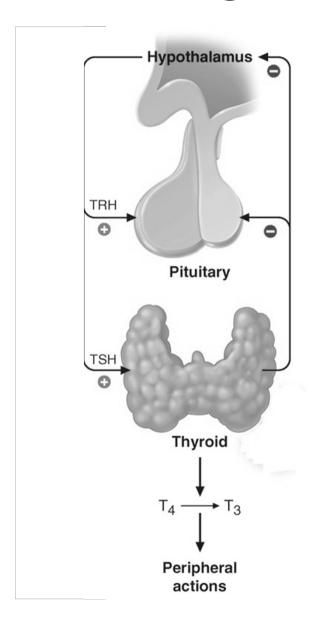
Reverse T₃ is inactive

lodine in the world

Source: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 18th Edition: www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

World health implications


Essential for understanding the investigations

1) Anatomy:

2) **Biochemistry:**

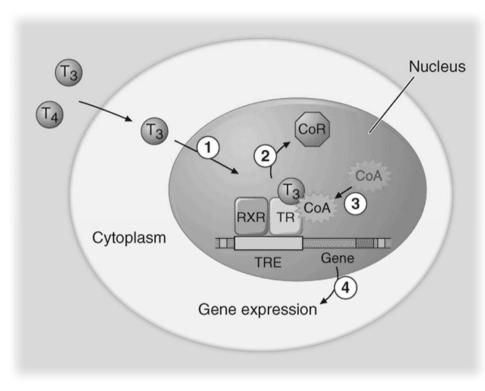
3) **Physiology:**

4) Diseases

The T₃ and T₄ feedback

Don't forget the Pituitary gland feedback

The T_3 and T_4 are protein bound 99.8% of T_4 99.7% of T_3


The binding proteins are:

- Thyroxine-binding globulin (TBG)
- Transthyretin (TTR) formerly known as thyroxine-binding pre-albumin (TBPA)
- Albumin

Hormone _I	property	T ₄	T ₃
Serum	Concentration total hormone	8 μg/dL	0.14 μg/dL
	Fraction of total hormone in free form	0.02%	0.3%
	Free (unbound) hormone	21 x 10 ⁻¹² M	6 x 10 ⁻¹² M
	Half-life	7 d	0.75 d
Fraction di	rectly from the thyroid	100%	20%
Production	rate, including peripheral conversion	90 μg/d	32 μg/d
Intracellula	ar hormone fraction	~ 20%	~ 70%
Relative m	etabolic potency	0.3	1
Receptor b	oinding	10 ⁻¹⁰ M	10 ⁻¹¹ M

From Harrison's principles of Internal Medicine 18th edition

Mechanism of thyroid hormone receptor action

Source: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 18th Edition: www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved. The thyroid hormone receptor (TR) and retinoid X receptor (RXR) form heterodimers that bind specifically to thyroid hormone response elements (TRE) in the promoter regions of target genes. In the absence of hormone, TR binds co-repressor (CoR) proteins that silence gene expression.

The numbers refer to a series of ordered reactions that occur in response to thyroid hormone:

- (1) T_4 or T_3 enters the nucleus;
- (2) T₃ binding dissociates CoR from TR;
- (3) Coactivators (CoA) are recruited to the T_3 -bound receptor;
- (4) Gene expression is altered.

Essential for understanding the investigations

1) Anatomy:

2) **Biochemistry:**

3) **Physiology:**

4) Diseases

Hyper - & Hypo-functions

In principle only two things can go wrong:

Increased production (over production) of

hormones: **Hyper**.....dism

Decreased production (under production) of

hormones: <u>Hypo</u>.....dism

Of cause there can be many underlying causes: Tumor, starvation, infections

Hormone prioritizing

Hor- mone	Function (Stimulates)	Releasing factors	Hypo function	Hyper – Function	Priority	
ACTH <	Adrenal cortical hormone	CRH	Second. Adrenal hypofunction	Cushing disease	1	
MSH	Melanocytes	CRH		Skin pigmentation	1?	
TSH	Thyroid hormone	TRH	Second. Hypothyroidism	Second. Hyperthyroidism	2	
FSH	F: Ovulation, M: Sperm	GnRH	Infertility	Precocious pupperty	3	
LH K	Corpus luteum	GnRH	Sec. hypogonadism		4	
GH	Growth	GHRH	Short statute	Acromegaly or gigantism	5	
PRL	Breast feeding		Lactation failure	Amenorrhoea Galactorrhoea	6?	
Mnemonic: G o L ook F or T he A denoma						
Oxytod	Meaning first goes G	H then LH	. Last ATCH	decreased one		
			contractions	density and fat?		

Essential for understanding the investigations

1) Anatomy:

2) **Biochemistry:**

3) **Physiology:**

4) Diseases

Diagnose

Hyperthyroidism

Goiter

Tachycardia, palpitations, high output failure

Weight loss

Nervousness Restlessness Emotional instability Insomnia

Sweating, Heat intolerance Increased appetite

From Porth and Matfin Pathophysiology –Concepts of Altered Health states 2009

Hyperthyroidism

Total T4	Total T3	Free T4	Free T3	TBG	TSH
Normal	Normal	normal	normal	normal	normal
_					
Di	agnos	:e ?			
	ugilos	, , ,			

	Total T4	Total T3	Free T4	Free T3	TBG	TSH
Euthyroid	Normal	Normal	normal	normal	normal	normal
	۸	۸	^	^	normal	V

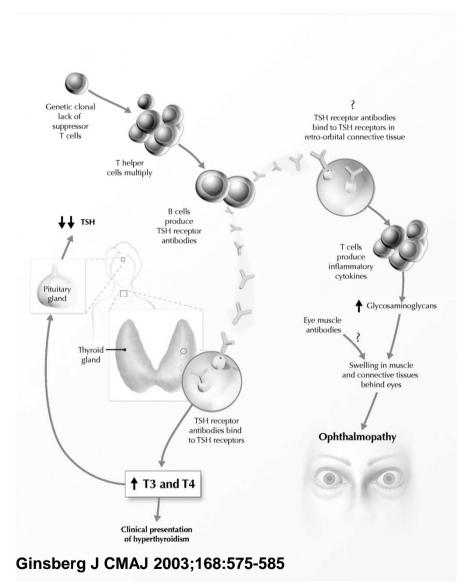
Diagnose?

$$^{\wedge}$$
 = high $^{\vee}$ = low

	Total T4	Total T3	Free T4	Free T3	TBG	TSH
Euthyroid	Normal	Normal	normal	normal	normal	normal
Hyperthyroid	۸	۸	۸	۸	normal	v if primary

Diagnose?

$$^{\wedge}$$
 = high $^{\vee}$ = low

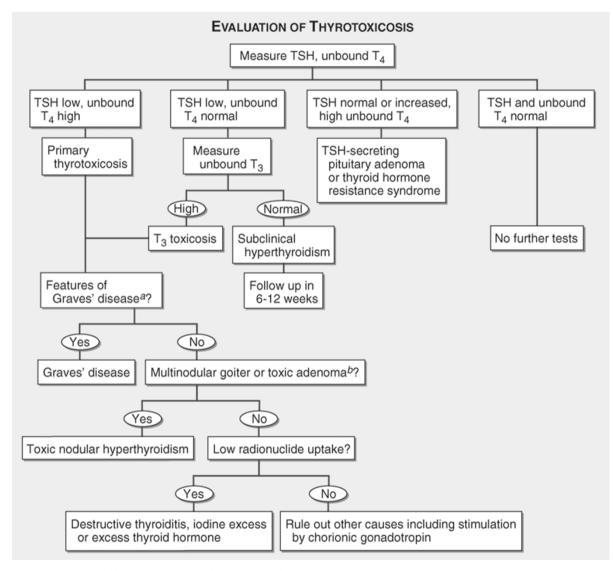

	Total T4	Total T3	Free T4	Free T3	TBG	TSH
Euthyroid	Normal	Normal	normal	normal	normal	normal
Hyperthyroid	۸	٨	۸	^	normal	if primaryif Secondary
	Normal	٨	normal	۸	normal	V

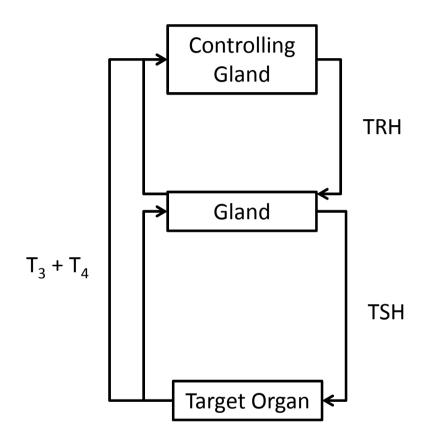
Diagnose?

$$^{\wedge}$$
 = high $^{\vee}$ = low

	Total T4	Total T3	Free T4	Free T3	TBG	TSH
Euthyroid	Normal	Normal	normal	normal	normal	normal
Hyperthyroid	۸	۸	٨	٨	normal	v if primary ^ if Secondary
T3 toxicosis	Normal	۸	normal	^	normal	V
Hypothyroid	V	V	V	V	normal	^ if primary V if secondary
TBG excess	۸	۸	normal	normal	۸	Normal
TBG deficiency	V	V	normal	normal	V	Normal
T4 displacement by drugs	V	normal	Normal or V	normal	normal	Normal

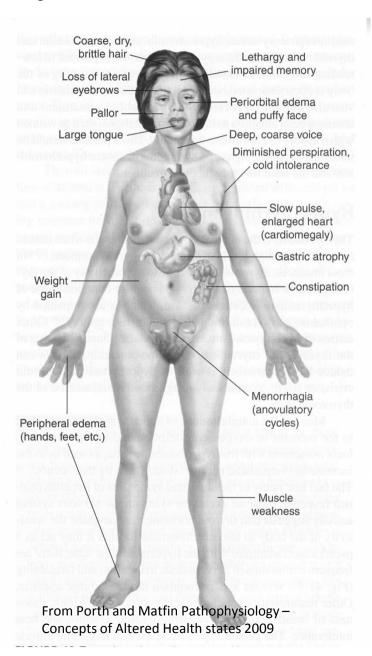
Hyperthyroidism Graves Disease





Source: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 18th Edition: www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Source: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 18th Edition: www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.



2011-10-05 ©lassen-nielsen.com

Source: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 18th Edition: www.accessmedicine.com Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

TSH	T3 T4	TRH	Conclusion
Slightly elevated	normal	Normal	
	Dia	gnose	?

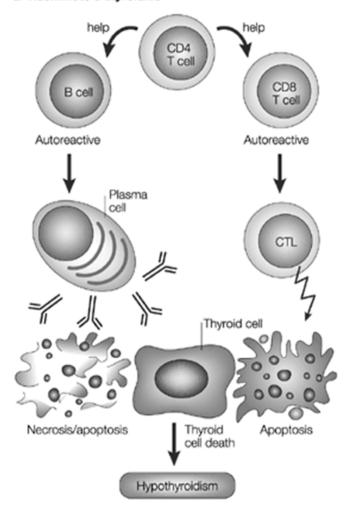
TSH	T3 T4	TRH	Conclusion
Slightly elevated	normal	Normal	Compensated hypothyroidism Test for antiTBO and antiTg
Raised	Low fT4	Normal/ elevated	

Diagnose?

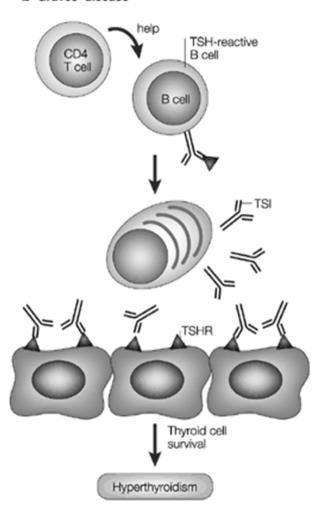
TSH	T3 T4	TRH	Conclusion
Slightly elevated	normal	Normal	Compensated hypothyroidism Test for antiTBO and antiTg
Raised	Low fT4	Normal/ elevated	Primary hypothyroidism Test for antiTBO and antiTg
Low	Low fT4	low	

Diagnose?

TSH	T3 T4	TRH	Conclusion
Slightly elevated	normal	Normal	Compensated hypothyroidism Test for antiTBO and antiTg
Raised	Low fT4	Normal/ elevated	Primary hypothyroidism Test for antiTBO and antiTg
Low	Low fT4	low	Tertiary hypothyroidism
Low	Low fT4	High	

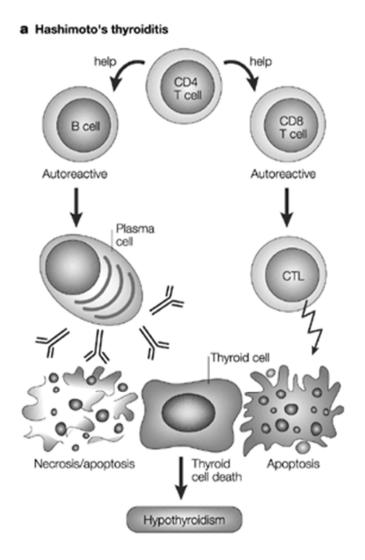

Diagnose?

TSH	T3 T4	TRH	Conclusion
Slightly elevated	normal	Normal	Compensated hypothyroidism Test for antiTBO and antiTg
Raised	Low fT4	Normal/ elevated	Primary hypothyroidism Test for antiTBO and antiTg
Low	Low fT4	low	Tertiary hypothyroidism
Low	Low fT4	High	Secondary hypothyroidism
Raised	Raised/ normal	Normal	

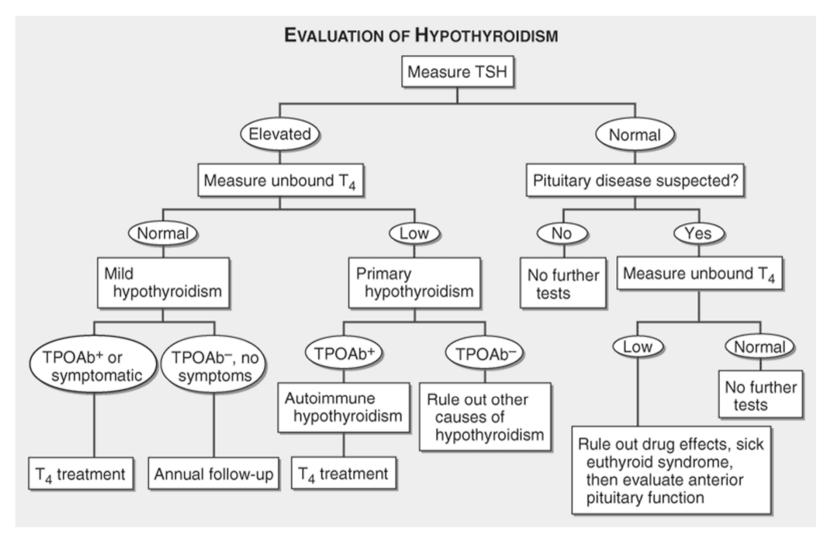

Diagnose?

Hashimoto's thyroiditis

a Hashimoto's thyroiditis

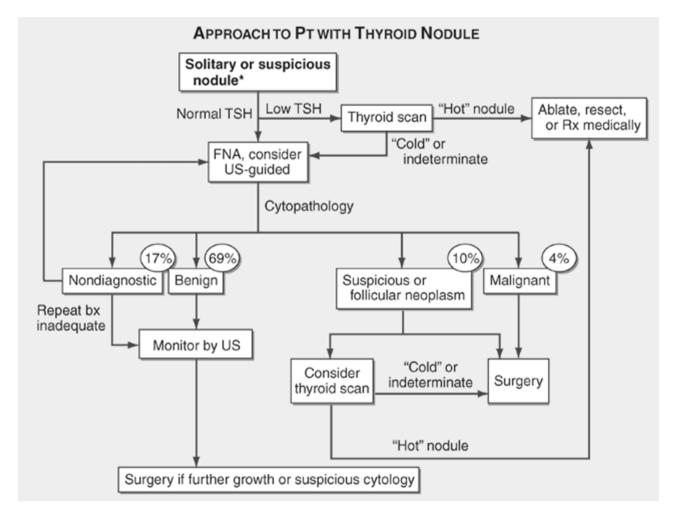


b Graves' disease


Nature Reviews | Immunology

Hashimoto's thyroiditis

Antibodies most likely directed against TBO


Nature Reviews | Immunology

Source: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 18th Edition: www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.

Thyroid Nodule

Source: Longo DL, Fauci AS, Kasper DL, Hauser SL, Jameson JL, Loscalzo J: Harrison's Principles of Internal Medicine, 18th Edition: www.accessmedicine.com

Copyright © The McGraw-Hill Companies, Inc. All rights reserved.